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1) THE METHOD

In many astronomical problems one often needs to determine the upper and/or the lower 
boundary of a given data set. An automatic and fast approach consists in fitting the data 
using a Modified Least Squares Method, where the function to be minimized, χ2, is defined 
to handle, asymmetrically, the data at both sides of the boundary. For example, in the case 
of a set of N points of coordinates (x

i
,y

i
), and considering uncertainties only in the Y axis 

(σ
i
), that function can be written as
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i 
 | y(x

i
) - y

i 
|α },

where α is an exponent (in normal Least Squares α=2), y(x
i
) is the fitted function evaluated 

at x
i
, and w

i
 is an overall weighting factor that is responsible for introducing the 

asymmetry in the fit. This factor is computed as explained in the table: β is the exponent 
that determines whether the fit is error weighted or not (β=0 to ignore errors; typically 
β=α=2 for error weighted fits), and the asymmetry factor ξ must be greater than 1. This 
function can be easily minimized following a numerical strategy. The use of single 
polynomials can provide a good answer and it is computationally very simple. An example of 
this polynomial boundary fit is presented in Figure 1. However, when the data exhibit 
rapidly changing values, a single polynomial is not always able to reproduce the observed 
trend. A more powerful alternative in these cases consists in the use of adaptive splines, 
which exhibit a much larger flexibility. 
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3) ADAPTIVE SPLINES

Splines are commonly employed for interpolation and modeling of arbitrary functions. Many 
times they are preferred to simple polynomials due to their flexibility. A spline is a 
piecewise polynomial function that is locally very simple, typically third-order polynomials 
(the so called cubic splines). These local polynomials are forced to pass through a prefixed 
number of points, which we will refer as knots. The coefficients of these polynomials are 
easily computed by imposing in addition that the first and second derivatives match at the 
knots (two additional conditions are required; normally they are provided by assuming that 
the second derivatives at the two endpoints to be zero, leading to what are normally called 
“natural splines”). The computation of splines is widely described in the literature (see e.g. 
Gerald C.F., Wheatley P.O., 1989, in Applied Numerical Analysis, 4th edition).

The final result of a fit to splines will strongly depend on both, the number and the precise 
location of the knots. In order to provide more flexibility in the fit, Cardiel N., (1999, PhD 
Thesis, Universidad Complutense de Madrid) explored the possibility of setting the location 
of the knots as free parameters, and determine the optimal coordinates of these knots 
that improve the fit to the data. The solution to the problem can be derived numerically 
using any minimization algorithm. Here we have used DOWNHILL (Nelder J.A., Mead R., 
1965, Computer Journal 7, 308), which only requires to evaluate the function to be 
minimized (and not the derivatives), provided an initial guess to the solution is available. An 
implementation of the method can be found in Press et al. 1989 (Numerical Recipes in 
FORTRAN: The Art of Scientific Computing, 2nd edition).

Figure 1: comparison between 
different strategies to determine 
data boundaries. The grey data 
correspond to 100 points randomly 
drawn from the function y=1/x (red 
line), assuming ∆x=0.01 and ∆y=10. 
The boundaries have been 
determined using simple 
polynomials (blue lines; upper 
boundary 5th degree; lower 
boundary 8th degree) and adaptive 
splines (magenta; upper boundary: 8 
knots; lower boundary: 10 knots). 
As expected, splines are more 
flexible and provide tighter 
boundaries than polynomials.

Fit to Adaptive Splines: Modus Operandi

Step#1: Fix NKNOT, the initial number of knots to be employed. Using a high number 
provides more flexibility, although the number of parameters to be determined (the knot 
coordinates) logically scales with this number.

Step #2: Obtain an initial solution. For this purpose it is sufficient, for example, to 
start by dividing the full X range to be fitted by (NKNOT-1). This leads to a regular 
distribution of equidistant knots. The initial fit is then derived by minimizing the 
function given in Eq. (1), leaving as free parameters the Y coordinates of all the knots 
simultaneously.

Step#3: Refine the fit. Once some initial spline coefficients have been determined, the 
fit is refined by setting as free parameters the location of all the “inner” knots, both in 
the X and Y directions. The “outer” knots  (the first and last knots) are only allowed to 
be refined in the Y-axis direction).  The simultaneous minimization of both X and Y 
coordinates of all the knots at once will imply finding the minimum of multidimensional 
function with too many variables.  This is normally something very difficult, with no 
guarantee of a fast convergence. In this work a different strategy has been adopted. 
The problem reveals to be treatable just by solving for the optimized coordinates of 
every single knot separately. In practice, an iteration has been defined as the process of 
refining the location of all the NKNOT knots (one at a time), where the order in which a 
given knot is optimized is determined randomly. Thus, at the end of every iteration all 
the knots have been refined once. An extra penalization has been introduced in the 
function to be minimized with the idea of avoiding that a knot exchange its order in the 
list of knots. This refinement typically implies that, if NKNOT is large, several knots end 
up colliding and having the same X-coordinate. The whole process can be repeated by 
indicating a given number of iterations, NITER.

Step#4: Optimize the number of knots. If, as the result of given number of iterations, 
several knots have "collided" and exhibit the same X-coordinate, this is an indication that 
NKNOT was probably too large. In this case, those colliding knots can be merged and the 
effective number of knots be accordingly reduced. With the new NKNOT, Step#3 is 
repeated again. If, on the contrary, the knots being used do not collide, it is interesting 
to check whether a higher NKNOT can be employed.

The process ends after a "satisfactory" fit is found at the end of Step#3. By 
"satisfactory" one can accept a fit that does not change by increasing NITER, and in 
which there are no "colliding" knots.

Figure 2: examples of boundary 
fitting to adaptive splines. The 
grey points correspond to the same 
data displayed in Figure 1.

Fit#0: initial fit using NKNOT=15 
after step#2 (see Modus Operandi 
in column at the right).

Fit#1: after step#3, NITER=10.

Fit#2: after step#4, merging 
colliding knots (4 and 3 in the upper 
and lower boundaries).

Fit#3: after step#3, NITER=10.

Fit#4: after step#4, merging 
colliding knots (3 and 2 in the upper 
and lower boundaries).

Fit#5: after step#3, NITER=10.

2) AN APPLICATION TO REAL DATA

A common problem when handling spectroscopic data is the determination of a “reasonable” 
fit to the spectra continuum. Most of the times people are happy enough just by fitting a 
polynomial to the general trend of the spectra, masking disturbing spectroscopic features 
such as important emission lines or deep absorption characteristics. A good alternative is 
to obtain the upper boundary fit, either by using polynomials or adaptive splines, as 
explained before. In the next plots some examples of these fits to the continuum of the 
K0V star HD003651 are shown, in which the effects of modifying different relevant 
parameters (e.g., the asymmetry factor ξ, the exponent α, or the number of knots) are 
examined. For simplicity, the examples are not error weighted (i.e., β=0 has been assumed). 
Figures 3 and 4 correspond to single polynomials, whereas Figures 5, 6, 7 and 8 represent 
the fits to adaptive splines.

Although the last example (and the rest presented in this poster) corresponds to 1-
dimensional (1D) boundaries in 2D diagrams, the method can be applied to higher 
dimensions (e.g. the determination of a surface as boundary for data in a 3D-parameter 
space), once an appropriate metric (distance) is defined in the multidimensional space.

Full details about this work have appeared in Cardiel (2009, MNRAS, 396, 680).
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So, you do not need a fit through the data points, So, you do not need a fit through the data points, 
but to obtain the boundaries of your data, do you?but to obtain the boundaries of your data, do you?

For more information see
Cardiel, 2009, 
MNRAS, 396, 680

The software code to compute these fits 
is available at

http://www.ucm.es/info/Astrof/software/boundfit
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