UV+IR mosaicking for study the extinction+emission of gas and dust clouds

Marcelo Armengot, Ana Inés Gómez de Castro

WSO-UV (Spain) July, 2016 SEA (XII) Bilbao

Abstract

WSO - UV

The work with UV images presented in Armengot et al. (SEA XI 2014) allow the study of **extinction** through computer visual enhancing of these clouds. The composition with IR images of the same sky area introduces a new chance in the analysis of the features of these clouds (composition of gas and dust, temperature, size and shape). When the **UV** shadows are **overlapped** on the **IR** emission of dust grains from distant clouds, the main features of these clouds can be observed and measured. Here are our first experimental results applying these techniques in a data set of UV and IR files from the Taurus region. The results are compared with theoretical models. The software tools for enhancing and the **mosaic** programs availables are referenced as well.

Extinction cross section

From Mie theory:

 $Q_{FXT} = Q_{ABS} + Q_{SCA}$

Emission and Extinction relationship

Dyson & Williams (1997)
$$\int F(\lambda)Q_{ABS}(a,\lambda)d\lambda = \int Q_{ABS}(a,\lambda)B(\lambda,T_g)d\lambda \qquad (2)$$

Extinction estimator

Draine (2003) ARAA

$$A_{\lambda} \approx 2.5 \log_{10} \left(rac{F}{F}
ight)$$

$A_{(\lambda = FUV)}$ estimation from GALEX signal (3)

 $+ F_{\lambda}^{0}$ flux in the absence of extinction (estimation) $+ F_{\lambda}$ observed flux

IRAS/GALEX scales

Multichannel mosaicking IR+UV

+ Mosaix from Armengot et al. (2014) As&SS + Traslation and rotation (same equations) + $IRAS \times 2 = 80$ pixels per degree map + GALEX/30 reduction in $A_{(\lambda = FUV)}$ estimation = 80 pixels per degree map + Reprojection with NASA **Montage** if needed

(1)

(3)

Overlapping map

+ $A_{(\lambda = FUV)}$ estimation marked lines + IR channel on background

Data comparison (longitudinal line)

Some hypothesis

• The left-hand side (of the equation 2) calculates the energy **input** into the grain from the radiation field in the visible and UV. The right-hand side calculates the energy emitted, and this range of wavelengths is generally in the infrared. D&W (1997)

• Considering $Q_{EXT} = Q_{ABS} + Q_{SCA}$ the total extinction estimation $A_{(\lambda = FUV)}$ maps here presented could be an appropriate estimation of Q_{ABS} too.

• Divergences in previous plots are normal, the relationship between emission and extinction depends on several factors.

• Data sources in IR and $A_{(\lambda = FUV)}$ estimations could solve empirically the equation 2 for computing the size of a (radio of grain particles).

Data comparison (transverse line)

UV source signal

Conclussions and work in progress

• IR and UV data together contribute to know more about gas and dust clouds. • Processing more data from stellar formation areas is needed. • Infrared cirrus and high-latitude molecular clouds in progress (Magnani et

al. 1986 ApJ).

• $A_{(\lambda = FUV)}$ estimations and multichannel processed maps must be available.