The ALHAMBRA survey: B—band luminosity function of blue and red galaxies at $0.2 \le z < 1$ by PDF analysis

C. López-Sanjuan, E. Tempel, N. Benítez, A. Molino, K. Viironen, L. A. Díaz-García, A. Fernández-Soto, W. A. Santos, J. Varela, J. Cenarro, M. Moles, P. Arnalte-Mur, B. Ascaso, and the ALHAMBRA team

Centro de Estudios de Física del Cosmos de Aragón (CEFCA), Unidad Asociada al CSIC, Teruel, Spain

The ALHAMBRA Survey

The ALHAMBRA survey (Moles et a. 2008) has observed 8 independent fields (*left panel*, 2.4 high-quality sq. degs.) with 20 optical medium-bands (~ 300 Å) + JHK_s in the nearinfrared (*central panel*) to achive a photometric redshift precision of $\sigma_z/(1 + z) \sim 1.3\%$ (*right panel*) for ~450k galaxies selected with $I \leq 24.5$ (see Molino et al. 2014, for details).

CEFCA

The $z - M_B$ probability distribution function (PDF)

We combine the redshift - spectral type (z - T)PDF provided by BPZ (Benítez 2000, *left panel*) with the I—band magnitude posterior (*central panel*) to estimate the $z - M_B$ PDF (*right panel*). The integration over T = E/S0 and T = S/SB define red and blue galaxies, respectively. The white dots mark point-like estimates. We study galaxies with $I_0 \leq 24$ (red line at *right panel*).

The ALHAMBRA B—band luminosity function

The ALHAMBRA luminosity function is $\Phi(z, M_B|T) \propto \sum_i PDF_i(z, M_B|T)$, computed for blue (*left top panel*) and red (*left bottom panel*) galaxies in 16 redshift bins ($\Delta z = 0.05$). The covariance matrix in redshift - magnitude - type includes shot noise and cosmic variance (*large central panel*, only the first 5 redshift bins are shown). We performed a χ^2 fit with one (two) redshift-evolving Schechter function(s) for blue (red) galaxies. The model has 12 parameters and is affected by the same selection effects than the data. The median model $\Phi_{mod}(z, M_B|T)$ is presented in the *two central panels*. To illustrate our results, the proyected luminosity function at $0.2 \leq z < 0.4$ is presented in the *right panels* with values from the literature (legend in the *central panel* bellow). The faint-end upturn is evident in the red population (e.g. Madgwick et al. 2002, Drory et al. 2009), imposing the need of a second, faint Schechter function.

The evoling Schechter parameters in ALHAMBRA

Fritz et al. 2014 (VIPERS)

The redshift evolution of the modelled Schechter function parameters $M_B^* \propto Qz$ and $\phi^* \propto 10^{Pz}$ for blue (*left panels*) and red (*right panels*) galaxies is presented. We find good agreement with the values from the literature (labelled in the *central panel*). The shown areas and error bars represent 2σ intervals. The faint-end slope is $\alpha_{blue} = -1.28 \pm 0.02$ for blue galaxies and $\alpha_{red} = -0.59 \pm 0.02$ for red ones. The second Schechter function of red galaxies has a fainter characteristic luminosity $M_f = -17.27 \pm 0.05$ and a stepper faint-end slope $\beta = -1.59 \pm 0.07$. The contribution of the faint red population to the luminosity density increases from $\sim 6\%$ at z = 1 to $\sim 11\%$ at z = 0. This methodology will be applied in the future to J-PAS (Benítez et al. 2014).

References

Beare et al. 2015, ApJ, 815, 94; Benítez 2000, ApJ, 608, 752; Benítez et al. 2014, [ArXiV:1403.5237]; Bell et al. 2003, ApJS, 149, 289; Brown et al. 2007, ApJ, 654, 858; Cool et al. 2012, ApJ, 748, 10; Drory et al. 2009, ApJ, 707, 1595; Faber et al. 2007, ApJ, 665, 265; Fritz et al. 2014, A&A, 563, A92; Loveday et al. 2012, MNRAS, 420, 1239; Madgwick et al. 2002, MNRAS, 333, 133; Moles et al. 2008, AJ, 136, 1325; Molino et al. 2014, MNRAS, 441, 2891; Zucca et al. 2006, A&A, 455, 879; Zucca et al. 2009, A&A, 508, 1217.

Contact & info : C. López-Sanjuan (clsj@cefca.es) – profuse.cefca.es – www.alhambrasurvey.com

Funding : AYA2012-30789, AYA2015-66211-C2-1-P, Aragón reseach group E103, Fondo de Inversiones de Teruel (FITE).