

Simulations of transit spectra of Hot Jupiters in the wavelength range of the CARMENES infrared channel $(0.96 - 1.7 \mu m)$

A. Sánchez-López¹, M. López-Puertas¹, B. Funke¹, P. J. Amado¹, L. M. Lara¹ and M. Salz²

¹Instituto de Astrofísica de Andalucía, CSIC, Spain

²Hamburger Sternwarte, Universität Hamburg, Hamburg, Germany

Abstract

Transmission spectroscopy in the primary transit of an exoplanet has proven to be very useful for obtaining information of exoplanet atmospheres from both ground-based facilities and space telescopes. The Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical Échelle Spectrographs (CARMENES) instrument has started being operative in early 2016 and here, we explore its capabilities for extracting information about Hot Jupiter atmospheres taking advantage of its ultra-stability, wide spectral interval (0.52-1.7 µm), and high spectral resolution (R=82000). We present some preliminary results of our simulations of the primary transit transmission spectra of HD 189733b in the 1-1.7 µm spectral range where several molecules, such as water vapour, carbon monoxide, carbon dioxide and methane, have strong ro-vibrational bands. Sensitivity studies are presented for the range of expected concentrations of these species, as well as for the expected range of temperature profiles. Our simulations have been performed using the line-by-line Karlsruhe Optimized and Precise Radiative Transfer Algorithm (KOPRA) adapted for exo-atmospheres.

1. Introduction

• HD 189733b is a Hot Jupiter exoplanet orbiting an orange dwarf star (K1.5V). It is one of the most studied exoplanets and, in the next months, the CARMENES instrument will obtain high resolution primary transit spectra. These will be used to search for atmospheric molecules such us H₂O, CO and CH₄.

Here we describe the tools and methods we use for the simulation of its transmission spectra for several P,T profiles and molecule volume mixing ratios ('vmr': abundance of one component of a mixture relative to that of all other components) and present results on: a) validations of our radiative transfer calculations; b) show the effects of changing p-T profiles and vmr; c) simulations of lowresolution HST/WFC3 observations and d) simulations of high-resolution CARMENES data in the same spectral range.

Table 1.2 CARMENES Parameters	
Wavelength coverage ($\Delta\lambda$)	VIS: 0.52-0.96 μm, NIR: 0.96-1.7 μm
Spectral Resolution (R)	VIS: 94,600; NIR: 80,400
Working Temperature (T _{work})	VIS: 285.00 ± 0.05 K; NIR: 140.00 ± 0.05 K

3. Comparison between KOPRA and a HAPI-based code calculations

• Hitran Application Programming Interface (HAPI): (a) Line-by-line data from HITRANonline; (b) computes high-resolution spectral simulations (absorption coefficients and radiance, transmission) and absorption spectra); (c) Choice of Instrumental Line Shape (ILS) to simulate experimental data.

- Fig3: Comparison between both codes for a **water vapor** simulation in an isothermal atmosphere 1500K with a vmr of $1 \cdot 10^{-4}$ and a boxcar ILS (0.01 cm⁻¹).
- Good agreement between KOPRA and HAPI calculations. Both codes calculate almost the same spectral transit depth.
- Differences:
- 1. Absorption base level: Due to different atmospheric grids and R_n values used.
- 2. Missing line in HAPI code (2.329µm).
- 3. Small differences (<5%) in transit depth of weak absorption lines.

• Note that the peak to valley amplitude is

Fig5.1: Atmospheric p-T profiles used in the simulations in Figs 5.2, 6.1 and 6.2. Profiles 2 and 3 similar to dayside temperature profiles in [4]. Profile 1 is colder, more suited for the HST/WFC3 transmission measurements (see below).

• Dayside P,T profiles of [4] are too hot to match the HST/WFC3 transmission data for the planetary limb atmosphere. Maybe this is partly because of the use of different spectroscopic linelists.

• The **best fits** to the data are given by the **colder profile** and vmr of 1x10⁻⁵ (solid black line) or vmr of 1x10⁻⁴ (dashed black line). A vmr of 6.3x10⁻⁶ as suggested by [6] might be too low to reproduce the peak-to-valley amplitude (perhaps due to different linelists).

• Large cross-talk between the p-T profile and the H₂O abundance (see Fig.6.2).

f2)

significantly reduced using HITEMP due to stronger absorption in the valleys (pink arrow) with respect to the band heads (green arrow).

6. Simulation of the transmission as seen by CARMENES

• Model atmospheres in Fig.5.1 are used to simulate the transmission spectrum with the CARMENES high spectral resolution (see Table 1.2) in order to explore its capability to a) identify trace gases as **CO**, and b) **constrain** the **p-T** and H2O **abundance**.

Wavelength (µm)

Fig5.2: Water vapor transmission spectra of HD 189733b as measured by HST/WFC3 compared to our theoretical models. Solid, dashed and dotted lines are for vmr's of 1x10⁻⁵, 1x10⁻⁴, 1x10⁻³, respectively. Colors indicate the temperature profile as in Fig.5.1.

7. Conclusions and Future Work

• Reduction of the the peak-to-valley amplitude using HITEMP 2010 compared to HITRAN 2012.

- Dayside T,P profiles from [4] are too hot to match the HST/WFC3 observations of the limb atmosphere.
- The best fits to the HST/WFC3 data are given by the colder p-T profile and H₂O abundance of 1x10⁻⁵ or 1x10⁻⁴.
- The large cross-talk between the p-T profile and H₂O abundance is reproduced in our HST/WFC3 simulations.
- Molecular detection of CO in the high-resolution transmission spectra of CARMENES might be possible. • CARMENES might help decrease the large cross-talk between T and water vapour abundance.

Study different P,T profiles to find the best fits to HST/WFC3 data.

• Characterize the telluric contamination of the Earth's atmosphere and its removal. **Future Work:** • Perform similar studies for other exoplanets, such as HD 209458b.

8. References

[1] Ehrenreich, et al. (2006). Astronomy & Astrophysics, 448(1), 379-393. [2] Brogi, M., et al. (2016). The Astrophysical Journal, 817(2), 106. [3] G. P. Stiller et al. (2001). Journal of Quantitative Spectroscopy & Radiative Transfer 72 249-280 [4] Madhusudhan, N., & Seager, S. (2009). The Astrophysical Journal, 707(1), 24. [5] McCullough, P. R., et al. (2014). The Astrophysical Journal, 791(1), 55. [6] Madhusudhan, N., et al. (2014). The Astrophysical Journal Letters, 791(1), L9. **Acknowledgments:** This work is partly financed by the spanish MINECO through project ESP2014-54362-P. Fig6.1: Simulated transmission spectra of HD 189733b at the CARMENES spectral resolution of 0.1 cm⁻¹ for the intermediate p-T profile 2, H₂O vmr of 1x10⁻⁴ and CO vmr of 1x10⁻³.

• The CARMENES high-resolution transmission spectrum likely allows us to **identify CO lines** along with water vapour.

Fig6.2: Analysis of the effect of changing temperature or H_2O volume mixing ratio.

• Changing vmr increases the absorption uniformly. Changing T has a stronger impact on the deepest absorption band. This could help decrease the huge cross-talk between T (several hundred K) and H₂O abundance (spanning 3 orders of magnitude).