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Do you need to compare two histograms 
not only by eye?

Avoid histogram comparisons!

The direct comparison of histograms built from 
continuous data is always a bad idea because the 
actual data have been replaced by the central values of 
the histogram intervals. 
In addition, for a fixed data set, the derived histogram 
depends strongly on the choice of the bin width and the 
origin of the intervals.
Instead of comparing two histograms, the comparison 
should be done using any of the many two-sample 
comparison tests available in the literature, but over the 
original un-binned data!
Anyway, histogram representations are frequently 
employed in scientific communication, particularly in 
Astrophysics. Sometimes its use is unavoidable when 
one needs to compare new results with already 
published data only available in histogram format.
It is not infrequent to find examples in the literature 
where the similarity between histograms is not 
statistically quantified but simply justified or discarded 
“by eye”. 

What is going on “inside” 
a histogram?

If one assumes that a given data set obeys a 
particular probability distribution, it is not 
difficult to show that the absolute frequency in 
any of the bins of a histogram built from that 
data set follows a binomial distribution (note 
that many people quote that it follows a 
Poisson distribution, which is only 
approximately true for bins with low absolute 
frequencies).

Using the “distance” between 
histograms

Focusing on the comparison of the global shape of histograms 
(using relative frequencies and ignoring the relative 
normalization), several methods are discussed in the literature 
(e.g. Porter 2008, arXiv:0804.0380). One starts by defining a 
suitable “distance” between the normalized histograms, and 
then estimates the probability distribution of such “distance” 
under the null hypothesis of equality of the histogram shapes.

In this work we have explored the application of these methods 
to pair of histograms built from simulated data following a 
normal distribution, and compared their results with the 
application of the well-known Anderson-Darling two sample test 
for continuos data over the simulated un-binned data. In 
principle, the null hypothesis should be rejected a fraction of 
times given by a, the significance level, which is what happens 
when applying the Anderson-Darling test. However, it is found 
that, when applied to  simulated continuous data following a 
normal distribution, the methods based on the “distance” 
between histograms tested in this work typically reject the null 
hypothesis in excess to the fraction  a.

Left: Comparison between the p-values (probability of Type I error) obtained when comparing
two simulated histograms using a “distance” based on assuming a binomial distribution of the bin 
frequencies (p.dist.bino) and when applying the Anderson-Darling test over the un-binned 
simulated data (p.ad.12). Each point corresponds to one of such comparisons. There is an 
excess of points in quadrant #3, which reveals that the “distance” method is rejecting the null 
hypothesis  a fraction of times which is larger than the significance level. Right: The previous 
diagram was repeated for several “distance” definitions and different number of data values in 
each histogram. The figure represents the fraction of times the null hypothesis was rejected in 
each case by using a=0.05. The methods based on “distance” between histograms tend to reject 
the null hypothesis in excess to that value of  a.

Left: Simulated histogram built from 200 
random deviates following a normal 
distribution (magenta dashed curve). The 
green points represent (rotated 90o) the 
theoretical probability of obtaining any 
absolute frequency as annotated in the vertical 
axis. This probability follows a binomial 
distribution with p (success probability) given 
by the integral of the normal distribution 
between the limits of each interval of the 
histogram. Since the parent population 
distribution is expected to be unknown, the 
only estimation that one typically can derive is 
the probability distribution plotted in red, which 
corresponds to a binomial distribution where 
the value of p is assumed to be the relative 
frequency of each interval of the histogram.

Left: Analysis of the statistical behavior 
of the frequencies in each interval of a 
histogram. By simulating 50000 
histograms corresponding to 1000 
random normal deviates, the mean m
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(red dotted line), which is not the case. 
On the contrary, the simulations reveal 
that the frequencies follow the 
prediction given by a binomial 
distribution (green line) with success 
probability in each interval given by the 
relative frequency p
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Even though the information about the exact location of the data within a given interval of a 
histogram was lost once the histogram was built, one can try to recover part of that information 
by using the frequencies of the neighbour intervals. If the adjacent intervals are not too noisy 
(i.e., their frequencies are not excessively small), one should expect that if the original data 
followed a continuous and not too complex distribution, the location of the data within a particular 
interval should be more clustered towards the border of the interval which is closer to the 
neighbour interval with higher frequency.  Applying this idea, one can resample the data within 
each interval, and then perform the comparison between histograms by applying a traditional 
two-sample test, such as the Anderson-Darling (for those fans of the Kolmogorov-Smirnov test, 
see Beware the Kolmogorov-Smirnov test!, by E. Feigelson & J. Babu, at the ASAIP web site). 

This work has explored this approach by using 5 different resampling strategies: 
- RST1: the data in each interval is assumed to be exactly in the center of the interval
- RST2: the data is resampled uniformly
- RST3: a straight line is fitted passing through the center of 3 intervals and the data redistributed 
using the fit as a proxy to the probability density
- RST4: similar to RST3, but using a second order polynomial
- RST4: similar to RST5, but forcing the individual fits of the different intervals to connect at the 
borders of the intervals. 

Note that all these methods do preserve the number of elements within each interval.  

Resampling the binned data within each interval

Results

By performing numerical simulations of histograms corresponding to random 
normal deviates, the five resampling strategies have been analyzed in different 
scenarios:

● Scenario A: comparison of one histogram data with a theoretical probability 
distribution.

● Scenario B: comparison of one histogram data with another un-binned sample 
data.

● Scenario C: comparison of two histogram data.

In all the cases RST3, RST4 and RST5 are in general better choices, specially 
for scenario A and B. Interestingly, The more complex resampling strategies are 
not specially good for scenario C when the histograms contains few data. This is 
not unexpected since in this situation the histogram intervals are too noisy. 

Scenario A Scenario B Scenario C
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