The hottest gas in massive star forming regions Observations of HC₃N* in hot cores

Víctor M. Rivilla¹, Jesús Martín-Pintado¹ and Izaskun Jiménez-Serra²

¹Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid, Spain; ²Harvard-Smithsonian Center for Astrophysics, Cambridge, USA

Abstract: Hot (T >150K), dense (n>10⁷cm⁻³) and chemically very rich molecular cores are considered the cradle of massive stars. These regions are hidden behind large extinction (A_v>20 mag), and contain hot dust emitting in the 15-50 µm range. This IR radiation excites the vibrational levels of HC₃N (HC₃N*), whose abundance is enhanced due to evaporation of grain mantles. Therefore, HC₃N* is a very well suited molecule to study the kinematics of the dense and hot gas surrounding very young massive stars. Our work calculates the density and excitation conditions of 2 hot cores, and reveals the presence of high excited outflows.

New Observations: We present spectra of HC_3N^* J=5-4 toward the Orion Hot Core and G10.47+0.03 carried out with the Green Bank Telescope (USA) in May 2012.

- Spectral coverage= 45-46 GHz (Q band receiver)
- Spectral resolution=2.5 km s⁻¹
- Angular resolution = 16"

Additional interferometric observations

LTE analysis using MADCUBA software

 MADCUBA (Madrid Data Cube Analysis) is a new developed tool for the analysis of cubes and single

spectra.

Spectra simulator

ROTATION DIAGRAM T_{ex} & N (assuming optically thin lines and source size)

HOT CORE	Orion Hot Core	Orion Hot Core G10.47+0.03	
L O	$v_6=1$ • Narrow component: gas	HC ₃ N*	HC ¹³ CCN* / HCC ¹³ CN*
CUB/ TION DATA	$\mathfrak{S}_{\mathfrak{s}}}}}}}}}}$	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} 0.6\\ 0.5\\ 0.4\\ 0.3\\ 0.2\\ \end{array} \end{array} $ $v_{7}=1$ $v_{7}=1$ $v_{7}=1$ $v_{4}=1$ $v_{5}=1 / v_{7}=3$ $v_{6}=1$ $v_{6}=1$ $v_{6}=1$ $v_{6}=1$	$\begin{array}{c} 0.08 \\ 0.06 \\ 0.04 \\ 0.02 \end{array}$

Both spectral components also detected

Blueshifted absorption towards the UC HII region B1

S	
S	

$\operatorname{component}$	$\log N (cm^{-2})$	T_{ex} (K)	$v_{lsr} (km s^{-1})$	FWHM $(\rm km \ s^{-1})$
narrow	15.84	165	5.5	7.0
broad	16.04	130	4.0	22.0

$\log N (cm^{-2})$	T_{ex} (K)	$v_{lsr} (km s^{-1})$	FWHM (km s^{-1})
18.0	270	67.5	6.0

High excited gas OUTFLOWING from the core

CENTRO DE ASTROBIOLOGÍA ASOCIADO AL NASA ASTROBIOLOGY INSTITUTE

